An Investigation of Loss Compensation Materials for the Conservation of Coiled Basketry

Nicole Ledoux
UCLA/Getty Conservation Program

Introduction
Basketry objects with large areas of damage frequently require loss compensation in order to reestablish structural stability and reintegrate overall form. Though recent approaches apply materials that are more compatible with original fibers and construction techniques, very few have been published for coiled basketry. This project attempts to fill this gap in the literature through a survey and practical evaluation of materials for compensating large foundation rod losses. The results of this study will be applied to the treatment of an Apache basket from the Southwest Museum/Autry National Center.

Polycaprolactone
Polycaprolactone (PCL) is a thermoplastic polyester that becomes moldable at 60°C. It is the primary constituent of the thermoplastic gauzes X-lite and Varaform, which have been widely used by conservators for temporary object supports.

Materials Evaluation
After qualitative evaluation of a wide range of potential materials, two were chosen for further testing based on their flexibility, strength, and visual properties. Both materials can be modified by bulking with fillers and molded to form rods of regular shape and size.

Lascaux 498 HV + Cellulose Pulp
Lascaux 498 HV is an acrylic dispersion which has found many conservation applications as an adhesive. When bulked with cellulose pulp, it can be molded and formed into rods that remain highly flexible after setting.

Rod Fabrication
Rods are fabricated using a silicone rubber mold. PCL (alone or mixed with bulking material) is melted directly into the mold over a hot plate. Lascaux 498 HV can be mixed with cellulose pulp and rolled into a rod, which can then be placed directly into the mold over a hot plate (shown at right). Once cooled and set, both materials can be further shaped and refined through carving and heat application.

Preliminary Results
Results of Oddy tests performed at both room temperature and at 60°C suggest that PCL may not be suitable for long-term treatment applications. The results for Lascaux have been more favorable, but the hygroscopic properties of this material remain under investigation.

Testing and Analytical Techniques

<table>
<thead>
<tr>
<th>Testing Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oddy Tests</td>
<td>Volatile emissions and chemical interactions</td>
</tr>
<tr>
<td>FTIR</td>
<td>Composition of materials and chemical changes after Oddy testing</td>
</tr>
<tr>
<td>XRD</td>
<td>Identification of corrosion on Oddy test coupons</td>
</tr>
<tr>
<td>pH Tests</td>
<td>pH of samples before and after Oddy testing</td>
</tr>
<tr>
<td>Response to RH Extremes</td>
<td>Hygroscopic properties (as measured by changes in weight, dimension, and appearance)</td>
</tr>
</tbody>
</table>

Acknowledgements
Prof. Ellen Pearlstein, Vanessa Muros, Angie McGrew, Prof. David Scott, Prof. Ioanna Kakoulli

Contact: nledoux@ucla.edu