Gore Place, Waltham, Ma. Conservation and Replication of the Federal Period Painted Finish found in the main stairhall
Mary Lou Davis, Southbridge, MA

Gore place in Waltham was built by Christopher and Rebecca Gore in 1805 to serve them as a country house and large farm. Christopher Gore graduated in Harvard’s class of 1776 and later became Governor of Massachusetts and a United States senator. Christopher and Rebecca Gore were in France when they were introduced to the French architect, Jacques Guillaume Legrand. Legrand drew the plans for Gore Place with the capable and willing assistance of Rebecca Gore. The house was built during a time period when Americans were eagerly turning to French style sources for everything from architecture to table settings. It is clear when approaching this Neo-Palladian Villa, that the Gore’s achieved a house of understated sophistication through their building plans.

The main staircase of the house is a beautiful ascending spiral that passes a door leading to a chamber of one of the arcaded hyphens of the house. The staircase completes its ascent on the second floor with the mahogany handrail curling back on itself to form a continuously undulating accent to the stringer and risers.

I was asked to come to Gore Place by Sara Chase, who was then a paint analysis consultant working for the Society for the Preservation of New England Antiquities. She had been hired to do some consulting work in the stairhall, and in the course of scraping off the over paint on the staircase treads, she was perplexed by what she was seeing through her microscope. There were many layers of paint coatings on the woodwork surfaces. With careful scraping, all of the layers of over paint cleaved cleanly away from what appeared to be the original paint layers of the treads. Any other case in which the over paint came away from a surface in such a clean manner, occurred if the over paint had been a commercial enamel brushed over a glaze such as one would find on a painted and grained door, or marbled commode top. In these cases, it seemed as though the greater number of over paint layers, the easier it was to cause it to cleave from the glaze. This was certainly the situation on the Gore Place stairhall treads. The space had been repainted many times with little preparation work in between layers, and so facilitated the over paint removal. Sara Chase, who has a charming effervescent personality, was excited by some small watery looking marks that were blue-black in color and were appearing under these layers of over paint. She and the Director of Gore Place, Dr. Charles Hammond, were speculating about the possibility of these marks being veinings of a Federal period marbled treatment. The stairhall floor is laid with soft grey and white Dove marble floor tiles, so the possibility of the stair treads having painted marbled decoration seemed logical. The unusual and delicate markings were quite friable under the most careful scraping and the pigments seemed to sit on top of the surface, with the vehicle and binder having vanished. I thought the paint surface was more unusual than the odd markings. It looked as though there was a thick, almost opaque and heavily pigmented glaze brushed onto an opaque paint surface. With the help of furniture conservator David Mitchell, we were able to see that this odd coating covered all of the woodwork surfaces and was consistently brushed with tight striations in the direction of construction. We questioned the intent of this treatment, as we knew of no other American example similar to it.

It had been decided by the Director and House Committee at Gore Place that the stairhall woodwork and
walls would be repainted and papered; so there was no thought of exposing and conserving the entire finish.

It has been fairly recent that more common architectural painted finishes have gotten some of the conservation attention that they deserve. Typically, walls in historic houses have been washed, sanded and painted with opaque, emulsified layers of semi-lustre alkyd oil coatings. Although these finishes are pleasant to look at, they might not always be a proper back drop for period paintings, furniture and quality reproduction wall papers and window hangings. When approaching a conservation project such as the Gore Place stairhall, I often feel disadvantaged by several conditions that exist in the field. There is a lack of thorough documentation about preceding restoration work that could be relevant to contemporary work; many of these historic finishes have been irretrievably covered over. Add to that, the tradesmen painters, who are aging and passing on with invaluable experience in a continuum of trade. The rapid changes in the coatings industry and inability to obtain products create a hindrance, as well. In this project, all these factors were a cause of frustration and I realized how much I had to learn before planning a treatment.

When the cleanly scraped 1805 finish was viewed, it looked drab green of a medium value. During the scraping, it was discovered that just prior to the last layer of white paint (1930’s?), the stairhall woodwork had been painted a light green and coated with an umber glaze. Its appearance matched very well the degraded 1805 finish. In areas that had paint chipped off the Federal finish for longer than six months, the color was a warm blue-grey. This difference was caused by the bleaching back of the oil component in the finish by ultra-violet light. The slightly translucent thick glaze which coated the ground paint layer was visually reacting with the under paint as any paint and glaze treatment is intended to do. Several associates in the field believed this glaze layer was an intended paint layer, but the coverage was so poor that it was difficult to imagine tradesmen painters leaving the job like that, especially for as illustrious a client as Christopher Gore.

Because of many questions, I took out several small sections of molding from inconspicuous corners and brought them to the Conservation Laboratory at the Fogg Museum in Cambridge, MA, where I spent a pleasantly instructive morning with Paul Witmore. Under high magnification, delineation of layers was immediately obvious and many questions were answered. The 1805 paint layer which lay directly on top of the wood substrate was a thick, warm cream color, which Mr. Witmore guessed to be a white lead. Directly on top of the white lead was a thin layer of an oil-resin glaze. This oil-resin glaze is commonly found on historic paint films and was applied as a sealer to a chalky and porous coating. This sealer coat is most misleading when one is visually interpreting a color, as the coating will often “yellow” severely whether covered over or exposed to light, due to the combination of oil and resin (oil will yellow and darken in darkness, resin will yellow and discolor in light). In the freshly scraped stairhall woodwork sections, it was now understood that this badly discolored layer was the cause of the yellow-green reading. This sealer coat was showing through the glaze and altering the original color combination of ground coat and glaze coat. We then looked carefully to determine whether there was a line of dirt on top of the oil resin layer thereby indicating a lapse of time following the 1805 white lead layer, before the application of the semi-translucent blue-grey coating. We found no evidence of a dirt film. In the sample under magnification, the layer on top of the oil-resin coating appeared as a blue-white film approximately one-third the thickness of the white lead coating and was speculated by Mr. Witmore to contain
Zinc white as a component. My feeling of well being after having verification of the glaze layer soon left me as Morgan Phillips (consultant on the project) informed me that zinc was not in commercial use until much later than 1805! I asked Paul Witmore at the Fogg if he would do additional analysis to determine pigments, and I went to the library at Sturbridge to read about Zinc.

Christopher Gore’s brother Samuel Gore, who was in partnership with their father, John, owned a Color Shop in Boston where they sold the highest quality artist supplies. At the time that Gore Place was built, Sam Gore was a Decorative and Heraldic painter, and it is his firm that is credited with the stairhall painting at Gore Place. Dr. Hammond (Director of Gore Place) informed me that Sam Gore owned a copy of Benjamin Martin’s *The Philosophical Grammer*, and that he was interested in the interaction of light reflection and refraction as it relates to the visible spectrum. It is also known that John and Sam Gore were importing French-produced supplies for their color shop, via London.

The analytical report from the Fogg confirmed the presence of zinc in the glaze layer. The sample had been chemically analyzed by X-ray fluorescence in a scanning electron microscope. The glaze layer was found to be very “rich in medium with a plastic consistency and low melting point.” This caused the organic material to boil under the electron beam, and the analysis was only able to “detect the major species present” (white lead, first layer lead and zinc white in the glaze layer). We were, once again, back to guessing about the original color and pigmentation of the glaze.

Zinc was being commercially manufactured by the French by 1782, and being touted to painters as a non-toxic, elegant bluish white, in the *Practical Treatise*, London 1795. Certain described drawbacks of zinc would seem to have been helpful towards applying the finish in the Gore Place stairhall. The space has long expauses of woodwork dado which would require a slow drying glaze to enable one to coat and then striate the surface evenly. Zinc oxide was not only a slow drier in linseed oil but it was criticized for being much less opaque than white lead, thus causing the apparent translucency that was visible after our scraping. It was not only possible that Sam Gore was obtaining Zinc from France via London by 1805, but according to Ted Penn’s thesis on Historic Decorative finishes, zinc could have been produced at home! To conclude, the small watery markings on the stair treads were obviously done with a feather dipped in color and “tickled” onto a wet glaze coat. This was the part of the finish that convinced me that the glaze was done in 1805 and intended to react with its ground coat. This sort of fanciful painted finish is not seen much after 1830, when zinc comes into commercial use.

I was fortunate in this project to be blessed with Director, Curator, and House Committee who were interested and supportive in their management of the job. They were continuously enthusiastic over the findings and committed to replicating colors or patterns that were not always esthetically pleasing to the eye of 1988.

The House Committee and Director approved the proposed treatment plan which began with a process of preparation work that would protect and isolate the finish from later coatings. I had hired a group of painters to help me with the project and they were receptive to preparing and painting the stairhall in a slightly different process from what they had been accustomed to. Because of the amount of over paint (some areas having 12 to 15 layers) and toe length of time since the last painting (30 years?), there was a considerable amount of crazing caused by the constant wood movement that is inherent in New Eng-
land. When a painter’s yoke (a pointed paint scraper) was gently worked under the crazing, we found that slight tappings with the point of the yoke onto the side of the ridge of over paint would bring substantial sections of over paint while stopping at the over paint that was securely bonded to the 1805 finish without abrading, marking or gouging the original finish.

I asked Morgan Phillips if he would help me in choosing materials for the project. He suggested that we use acryloid 8–72 in di-ethylbenzine as an isolating coat. The di-ethylbenzine is a slow evaporating solvent and we were able to coat large areas with the acryloid and have it flow out so as not to show brush marks. I found that there was an additional bonus with this combination of acryloid and solvent in its action of flowing in and under edges and cracks of the over paint and bonding the fractured edges to the finish. This would become more important later.

The front door of the stairhall had a considerable amount of dry rot and joints that had opened ¼” at the base of the door. The Committee had decided not to do any major construction work on the door and wanted it filled and repainted as well as possible. We used a two part combination of epoxy filler that remains flexible enough in the joints to move with the movement of the door, but can be sanded smooth to create a good finish. The handsome fan light, side lights and window sash on the second floor also suffered from rot. We soaked into all of the exposed wood, an alkyd resin in oil, to consolidate the sash prior to glazing and painting.

The next step was to use a soft and very light latex filler and, with putty knives, spackle all the fractured edges of over paint. This would bring about a feathering out of the edges without using aggressive sanding. This filler dries in one-half hour, and we were able to hand sand with 150 grit paper to a smooth edge. We found that, due to the amount of over paint in some areas, the ridges formed by our scraping would be too noticeable for a satisfactory paint job. In all of the other rooms of the house, the surfaces had been sanded very well and repainted in the best possible manner. We knew our work would be judged against that and we felt as though we needed to compromise our conservation approach to satisfy the House Committee. After we primed and painted the first layer of paint, we used finishing sanders to smooth the edges of the over paint for a less lumpy surface. This had to be done slowly, as the latex filler was so soft that the sander would go through the material quickly if it touched it. The consolidating action of the acryloid helped to keep the over paint stable enough to withstand the vibration of the sanding.

I had decided to use a warm white as a ground coat color. This alkyd oil layer would serve as the imitation of both the original white lead layer of paint and the oil-resin sealer coat. After brushing on two coats of semi-lustre light cream colored paint, we hand sanded thoroughly with 180 grit paper. The surfaces were now prepared for the glaze.

I felt as though the greatest problem in formulating a glaze for the stairhall woodwork would be the necessary length of time that was needed to coat and evenly striate some of the larger sections. Another problem was the blue-grey glaze color that I did not want to “green out” by having to add an amber colored oil or varnish as a means of making the glaze stay wet longer. The 1805 glaze did not appear to have a great amount of oil or resin in it and it reminded me of an early 19th century painter’s guide book recipe on the process of flattening walls. The recipe calls for a combination of finely ground pigment in “spirits of turp” with a small amount of oil or resin as a binder. This is coated over a good oil ground
of paint, which would probably be quite glossy. The mixture would lose its solvent through evaporation and result in a soft, mat wall surface. I felt that this was the final texture and sheen of the original glaze.

Morgan Phillips helped me by testing various paint thinners for their rates of evaporation. I wanted to use a basic combination of pigment and solvent for the glaze, to achieve a dry chalky finish. We tested common paint thinner, “permtine”, di-ethylbenzine, “Turpenoid” and “Winsor and Newton’s” paint thinner was, by far, the slowest in its evaporation rate and was a wet blot on paper after 45 minutes, while the other thinners were dry after 25 minutes.

I needed to mix up three gallons of glaze and did not want the expense of having to purchase a quantity of artist’s oils for the pigmentation. I also knew that the glaze would need binder materials, as it would be too thin to apply. I began with several quarts of flat white oil paint thinned with common paint thinner. This contained approximately 43% calcium carbonate and silicates.

Mixing the final color resulted from Sara Chase’s suspicion of the presence of Prussian blue in the finish and my visual reading of the 1805 finish which had bleached back. The House Committee then approved color samples. The colorants for the glaze were various proportions of Thalo blue, carbon black, yellow oxide and raw umber. The final glaze was a thin and somewhat gritty mixture that required a good amount of practice before we could work with it easily and develop a rhythm for uniform application. We were able to coat areas as large as 50 square feet and have the glaze stay pliable for one-half hour.

When the glazing was complete, the finish was mat and chalky and was considered too delicate for easy maintenance in a historic house which has high visitation. I needed to find a sealer that was clear, mat in sheen and reversible with ammonia. I contacted a coatings formulator in the area who was able to supply me with an acrylic sealer that met all the criteria. The sealer did change the surface from one described as flat to one that is dull. Oil and dirt can be washed off easily and the coating interferes very little with the overall appearance. We used only one application of sealer, as several applications would cause a higher sheen. It had to be applied as carefully as a varnish; any quick application would be noticeably splotchy.

The replicated finish as an end product is a subtly variegated coating which ranges in color from a putty grey to a rather bright blue, depending on the light and the angle of the surface that one views. It has a receding, cold appearance, which blends with the dove marble floor tiles. It is a compatible finish to the neo-classical design of the space. The soffit, which runs adjacent to the free flying spiral of the staircase, is glazed in a lighter tone along with the fan shutter and side light shutters, as they were done originally.

The finish will be complemented by an accurately reproduced stair carpet with blue-black painted veinings on the treads and “stone colored” mottled wallpaper above the dado with block printed borders, to present a stairhall that is as impressive in its decoration as it is in its architecture.
There seems to be an increasing need by museums, particularly living history museums, to commission the faithful reproduction of various artifacts to be used within the context of the museum’s interpretation of exhibits. It is often necessary to draw from conservation principles to meet museum requirements.

In their plans to refurbish the Gardner-Pingree House to a time period of 1805-1815, the Essex Institute in Salem, MA sought a floor carpet reproduction for the dining room. Because of the wealthy economic status of the owners of the house and a letter describing a specific type of English manufactured floor cloth which imitated a “Brussels” carpet, Dean Lahikainen (Chief Curator) asked that a sample be produced based on a “Brussels” carpet design. The sample would enable us to judge the visual results of the cloth sample and estimate costs for the reproduction of a 22’ X 19’ floor canvas.

Alexis Elza (Decorative painter) assisted me with this project. We were provided with a photograph of a point paper which had been part of a collection of carpet point papers belonging to an early 19th century English manufacturer of woven carpets. Water colored point papers were drawn up by artists to serve as basic designs for the manufacturing of carpets, wallpapers and fabrics and showed the full repeat of the design.

The manufacturing of these canvas floor cloths which imitated woven carpets was done with large (20” X 20” X 5½”) carved wooden blocks with an attached leather strap for handling. The blocks, each carved to contribute a different color, were successively printed, building up to the complete pattern. The early 19th century floor cloth printing block owned by the Essex Institute has an incised grid which cuts through the raised carving of the block and forms, when printed, a negative grid pattern of squares that are smaller than 1/8th inch. The width of the incised lines is less than 1/16th inch. The grid causes the printed canvas to imitate the looped pile of a “Brussels” carpet by breaking up the entire pattern into small squares of color.

The Essex Institute hoped that we could reproduce the same type of imitative carpet without using the time and cost of cutting and carving blocks and producing the carpet as the original would have been done in a commercial process. We were asked that the painted linoleum sample replicate the original floor cloth in texture, color and sheen and be durable enough to withstand museum visitation. The colors in the carpet were to match early 19th century colors and the final overvarnish should mimic an 1815 appearance in color and sheen. Although the original carpets were printed in oils and were dried for six months prior to shipping, our medium must dry quickly for storage and installation purposes. The Institute also wanted the floor cloth to be painted on a material that would not bunch up when walked upon by museum visitors and guides. Although the original carpet would have been printed on a gessoed and painted seamless canvas, a Battleship Linoleum was chosen in place of canvas. This material could be adhered to an underlayment and remain flat and its use would cut down on the cost of preparing a canvas.

We began the project by enlarging the 5” X 7” photograph of the point paper to the final full repeat size of 22” X 32”. The repeat size was given to us by the museum. We plotted points onto one inch graph paper after marking a grid around the point paper photograph.
The enlargement was colored following the photograph colors which were vivid blue, green and yellow. We spent some time attempting to get the repeat to match up with itself while lying flat. It wasn’t until Alexis held the point paper up to a mirror that we realized that the repeat needed a mirror image of itself to bring about a beautiful pattern of large trailing garlands of stylized flowers surrounding an abstract looking splotch. We understood then, that whatever templates were made for the carpet, we would need an additional set of mirror image templates for printing in reverse alternating repeats.

We thought that by incorporating a screen of some type which had the approximate size grid of the original carpet; we could imitate the grillwork design. By shopping at building supply stores, we purchased various sized screens, to print through. Our only success was with a rather heavy gauge mechanic’s wire. We then spent some time in developing a system of stencils that would give satisfactory results. We were pleased with the results of “painting gesso on linoleum and pushing 1/8th square mechanic’s wire into the wet gesso which left a raised grid when dry. We cut stencils out of mat board and stenciled a design onto the dry, raised grid. The texture of this experiment imitated the original cloths and the grid was visible, but it reflected the exact opposite method of paint application from the original process. The grid in the original carpet was formed by negative space and was therefore recessed into the paint. Also, we suspected that the gesso might crack off a highly finished Battleship linoleum when walked upon by many museum visitors. In addition, the amount of overvarnish needed to fill in the grid to form a level surface would be considerable.

We decided to combine our stencil and mechanic’s wire and push paint through both layers at the same time. We believed that this method would create a surface that resulted in a more accurate copy of the original, due to a more similar paint application process. We realized that if we chose a black or dark colored linoleum and stenciled on all other colors in the design, we would have the dark negative space appear as the lines of the design and the grid, as in the original cloths.

We took our colored enlargement and had six photo copies made of it, one copy for each color and the sixth copy to serve as a model for lining up the registration of the wire and stencils. After pasting the photo copies onto the illustration board, we separately colored each one with red or blue in the appropriate areas using the enlargement as the master. We purchased many blades for our mat knives and spent nearly four days slicing through illustration board to create five intricate and individually colored stencils all measuring 22” X 32”. If I were to do this over, I would seek out a wide throated jig saw with a fine blade and cut out the two stencils with the greatest amount of color in the design, simultaneously. I think this would save time and be much easier on one’s hand.

At this point we needed an adhesive that would adhere the mechanic’s wire to the illustration board. After experimenting with epoxies and hot melt glue, we decided to use ceramic tile mastic, applying it in a flat layer with a trowel to the sandwiched stencil and mechanic’s wire. We then put all the templates in a frame and clamped them flat, with mylar in-between stencils, until they were dry. We varnished all the templates several times in anticipation of using acrylic colors and water washing. At this point we had five strong templates that could be handled. The mechanic’s wire had given strength to the illustration board stencils and formed a substrate that the smaller, finer design details could adhere to.

We had incorporated several aids to facilitate registration. We took all but the first stencil in the printing
process and cut out several “Keys” in the design and labeled them clearly. For example, we stenciled the blue template immediately following the red template. Several red sections were cut out of the blue template and marked so that we didn’t stencil through the Keys. In this way, we were able to “Key up” the design quickly. By using our sixth photo copy adhered squarely to the mechanic’s wire, we had a model to check the placement of the stencil in relation to the wire as it was being glued. This would insure that the overall design would be registered on the grid in all templates.

We were aware that our efforts might achieve a much neater product than what was originally produced. When we examined five different early painted floor cloths of this type, over runs in the paint and poor registration of the printing blocks, were often blended by a colored over varnish. It is always a terrible temptation to improve upon the past and difficult to put deliberate flaws into a project even to bring about visual, historical accuracy. We were ready to begin printing with acrylic colors which we had decided on for their stable and quick drying qualities. We also believed that the adhesion of acrylics onto the Battleship Linoleum would be better than oil paint, due to their compatibility with the linoleum finish. We had discussed the possibilities of adding fillers to the acrylics to obtain the type of thick built-up paint texture of the original cloths, however, Alison Cornish (Project Director) and Dean Lahikainen agreed that the visual impact of the texture needed to be sacrificed for the durability of wear. We were leery of a raised paint film being worn or chipped off by museum visitors and it was necessary that the maintenance of the cloth be as simple as possible with no more upkeep than periodic re-varnishing.

We did not have a clear and accurate prototype cloth or illustration to match our colors to for stenciling. The original painted carpets that we viewed were all badly worn, dirty or faded. In one case, the carpet had been painted in the 1820’s and re-painted in the 1840’s, as was common. Both of the patterns of this carpet and all of the colors were visible so that documenting anyone color was very difficult. The photograph of the original point paper was poorly exposed and gave us no real indication of the values of any one color. In addition, the original point papers were painted with water colors whereas the actual cloths were being printed in oil colors that had most likely been adulterated. Using the point paper photograph, we mixed the necessary colors using combinations of yellow, red and green oxide acrylics. Phthalocyanine blue and titanium white, raw umber and ivory black acrylic completed a fairly simple color palette.

The most effective stenciling style turned out to be a traditional one, and after trying various styles of brushes or pads, a large stencil brush with a minimum amount of acrylic color gave the clearest print. We completed the printing of all five colors onto the dark linoleum and were delighted at the carpet-like look of the sample. We flipped our templates over and printed another sample to see what the reverse pattern would look like when butted up to the first repeat. This printing was fuzzy due to the distance of the wire from the linoleum, but it gave us an exciting preview of the entire design.

Our next task was to carefully re-measure the dining room in the Gardner-Pingree House and make a scale model of the room along with a scaled carpet repeat. We could determine from this that each set of templates would need to be printed 49 times to cover the wall-to-wall specification. We knew that our illustration board stencils would not stand up to the type of wire brush cleaning that would be necessary in printing that number of times. After printing several samples, we had a substantial amount of paint clogging the mechanic’s wire and filling in the design.
Alexis and I wondered if the carpet pattern could be digitized on a computer which would program a laser to cut stencils for us out of a material that when combined with the mechanic’s wire would form a long lasting strong and scrubbable template. Choosing a traditional stencil material, we purchased some sheet tin. We hoped that the laser would also weld the mechanic’s wire to the sheet tin at the edges of the pattern. We contacted a laser “job shop” and made an appointment to see the owner. Although the owner was surprised at the complexity of the design, he assured us that the five templates and their mirror images could be cut and welded by a laser, for a price. We calculated the prospective time and costs of having to cut and glue, by hand, two or three more sets of stencils as we were certain that the original set would not last a full course at printing. We agreed that the laser cut tin and wire stencils would be less costly and more durable.

We needed to concentrate now on the overvarnish. The original cloths appeared to have thick, colored overvarnishes that seemed to have been quite elastic or fat with oil. It is difficult to guess what color(s) these varnishes were tinted as all of the antique cloths that we looked at had badly degraded surfaces. We speculated that the original sheen must have been high and of a medium translucency. Because we had time before the final cloth was to be printed, we coated three full repeat size samples of the printed linoleum with an acrylic emulsion, a polyurethane and a marine spar varnish. We then placed these samples on the floor in areas that are highly trafficked and sometimes abused by our respective children and pets. After six months of wear it is obvious that the polyurethaned sample has worn the worse and has scratched and darkened. The acrylic emulsion and the spar, marine varnish are in comparable states of wear which could be described as good. The spar varnish imitates the conjectured original overvarnish to the greatest degree and it is flexible but it is extremely difficult to apply as it attracts dust particles to the film in a disastrous manner and remains tacky for hours.

I am planning to commission a coatings formulator to develop a finish which should be high in sheen and elastic. We will want to tint the overvarnish with colorants to the desired hue, choosing stable colorants, if possible. Although the printing of the carpet will be done in our workshop, the overvarnish will be applied after the floor cloth is installed in the Gardner-Pingree House. We will have limited control over dust particles while varnishing. The house will have just received a thorough refurbishing, so it is likely that our efforts towards a dust-free environment will be futile. Because, of the large surface area of the cloth, we must have an overvarnish which will stay wet long enough to keep a wet edge while brushing, to avoid any uneven areas. Additional information will be needed before the final overvarnish coating is chosen.

Although we have not actually reproduced this floor cloth for the Gardner-Pingree House in Salem, most of the ground work has been accomplished to determine the costs for the reproduction carpet. At this time we only hope that when the project is over, we will not have any unhappy experiences similar to the one that Mrs. Salisbury found herself in with Mr. Perkins regarding the purchase of a custom painted floor cloth.
Aug. 9, 1830
Boston to Worcester
“Boston Augt 9th Monday pm

My Dear Sister,

I should have written you by this days mail, but did not get through with my interview with Mr. Perkins till close upon one o’clock. I am disappointed in the result of this meeting, because I know you will be also. You must keep your carpet, and without - any redress. He in the first place observed that, in refer-
ences to the pattern of it, he sent you, when you wrote for patterns, all the variety he had, and they had each of them been much admired, and were popular, and much called for. You then wrote, for exactly the pattern which he sent you, and so far he says the commission is perfectly, if not satisfactorily, executed on his part. He then took from his pile of papers a plan of the Carpet, ordered by you as he says in Oct. 1829. And desired me to take the measurement of the canvas. “If,” he adds, “it does not correspond with the Draught, then I shall feel obligated to take it back, and replace it with any other cloth Mrs. Salisbury may order: but if, it be a precise copy of the draught, then it belongs to Mrs. Salisbury, and when she shall have made such disposition of it as to satisfy herself, I am ready and happy to answer (her?) further commands. I took the measurement accordingly, and must say that it is made precisely according to (order) Now if the Draught above referred to be the same one you gave originally (sent) to him in Oct. I see not that you have any thing to do but to make the best of it. He refuses to take the Canvas returned by you, and it is now at our Store, waiting your further instructions.