Identification and care of Photographic negatives

Mogens S. Koch

Part 6.

Survey and evaluation techniques

I prefer

Condition Assessment and Preservation Plans (DK)

Mogens S. Koch
Identification and care of Photographic negatives 6+7, Hermitage

Introduction and Background

- Condition assessment will detect the most vulnerable / degraded / threatened photographs and seek causal relationships
- Documentation of storage history and current state of conservation
- Conservation Plans is about to recommend one or more like priority choices
- Future conservation strategy - meaning and consequences of choices
- Success Criterion: nothing has happened lately!

Mogens S. Koch

Introduction and Background

Photo Collections of individual images, is regarded as a meaningful and irreplaceable natural resource that requires permanent maintenance, while the photographs must be available for distribution of inputs, knowledge and ideas

Mogens S. Koch

Introduction and Background

A conservation plan based on concrete knowledge about the collection current state of preservation combined with knowledge about the specific storage conditions supplemented with conservation history.

Mogens S. Koch
Introduction and Background

Aim of Conservation management Plan:
- Predict the outcome of the next state assessment under unchanged conditions or under other (improved) circumstances - possibly different scenarios.

Relation between impact and conservation

<table>
<thead>
<tr>
<th>Importance</th>
<th>Priority</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outstanding national importance</td>
<td>High</td>
<td>Active preservation</td>
</tr>
<tr>
<td>Significant national importance</td>
<td>Low</td>
<td>Optimum mode</td>
</tr>
<tr>
<td>Regional or Local importance</td>
<td>Medium</td>
<td>Good magazines</td>
</tr>
<tr>
<td>Less importance</td>
<td>Low / medium</td>
<td>Good magazines</td>
</tr>
</tbody>
</table>

D: Heavy damaged objects
C: Treatment-dependent condition
B: Stabilized condition
A: Dissemination suitable mode

Climate Measurements

![Climate Measurements Chart]

Source: Report on the conservation of kulturarven, KUM 2003, p. 27
Identification and care of Photographic negatives 6+7, Hermitage

Time-weighted preservation index of 14 photo collections in Norway

Storage of several types of media in an archive

Temperature Fields

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human comfort</td>
<td>20</td>
</tr>
<tr>
<td>Cool</td>
<td>12</td>
</tr>
<tr>
<td>Cold</td>
<td>+3</td>
</tr>
<tr>
<td>Freezing</td>
<td>-5</td>
</tr>
</tbody>
</table>
Storage of several types of media in an archive

Evaluation of Quality

- Unacceptable - damage will occur within a few years.
- Damage will occur after a longer period. Storage can be accepted in a shorter period.
- Comparable with international recommendations (ISO)
- Long shelf life can be expected

Material

<table>
<thead>
<tr>
<th>Storage</th>
<th>Glass Nitrate</th>
<th>Acetate B/W</th>
<th>Acetate Color</th>
<th>Poly ester B/W</th>
<th>Poly ester Color</th>
<th>Positive photo B/W</th>
<th>Positive photo Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 20°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool 10°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + 5°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze -5°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mogens S. Koch

• By knowing the state of preservation, we can estimate the remaining life span of the film.

A-D Strip evaluation

Storage conditions

Remaining life span

Mogens S. Koch
A Prediction Tool

A-D Strip level

Storage conditions

21°C, 50% RH

Time remaining before critical decay takes place

Predicted time from 0.5 to 1 acidity (level 3): 5 years

Degradning Film Needs Better Climate for Same Life Span

A-D Strip level

Degrading Film

Fresh Film

Climate

-1°C, 50% RH

16°C, 50% RH

Will reach critical condition (acidity of 1.0) in about 100 years

Condition Assessment - Approach

- Recommendations on systematic "surveys" seen in several papers
- Still not have a (standard) method
- Difficult to compare between sessions and in sessions over time
- Reference collections - such collections
- Observations and documentation of natural aging (and comparison with artificial)
- Uncovering new conservation problems and extent
Expectations for damaged images

<table>
<thead>
<tr>
<th>Reasons</th>
<th>Stages</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Some materials (nitrate, acetate, color)</td>
<td>Clump together, where the materials are</td>
</tr>
<tr>
<td>Exposing</td>
<td>By chance together or individually</td>
<td>Spread in the collection</td>
</tr>
<tr>
<td>Storage</td>
<td>Some materials, elders most at risk</td>
<td>Probably by age and materials</td>
</tr>
<tr>
<td>Handling and Use</td>
<td>By chance together or individually</td>
<td>Spread in the collection</td>
</tr>
</tbody>
</table>

Mogens S. Koch

Expectations for damaged images

- 1890
- 1950
- 2006
- Original
- Oldest most sensitive
- Damaged
- Contamination
- Storage

Mogens S. Koch

Collection of information

- General Information
- Description of photo collections
- Description of the stored
- Condition Assessment of Collection
- Analysis and evaluation of the collected information
- Recommendations and Action Plan
Recommendations and Action Plan

• Improvement Areas (buildings, archive room, climate, packaging, presentation) and preferably in relation to international standards or guidelines
• Argued and prioritized action plan with short-term as well as long-term priorities - like so operational / as practical as possible.

Collection of information

General Information:
– Name of Institution
– Address
– Contact
– Time of visit
– Type of institution (museum, library, private collection etc.)
– Use of photo collection

• Priority relative to other task / purpose

Collection of information

Description of photo collections
– Period
– Quantity
– Criteria for collection
– Additions
– Registration System
– Operation (how, who)
– Accessibility (resting or working archive)
– Demand and use
Identification and care of Photographic negatives 6+7, Hermitage

Collection of information

Description of photo collections
- Offered services (photocopying, scanning, etc.)
- Loans (conditions and practices)
- Image Techniques (analogue / digital, negative, prints, slides, etc.)

Collection of information

Description of the storage conditions
- Building (s)
- Storage (magazine, Archive) and location in the building
- Size
- Climate Measurements
- Air Quality Measurements
- Light
- Heating System

Collection of information

Description of the storage conditions
- Access
- Design / arrangement of the archive room
- Secondary packaging
- Primary packaging
- Risk Assessment
- Disaster planning (water, fire, theft, etc.)
Collection of information

Condition Assessment of collection
– Selection of test method (random, systematic, sampling)
• Condition Assessment
• Categorization or 0-3?

Condition Assessment - negatives

• Category 0: Good Condition
• Category 1: Good Condition, observation, enhanced supervision.
• Category 2: Preservation / restoration, copying (analog / digital), chilling
• Category 3: Preservation / restoration, copying (analog / digital), chilling - urgent

Category 0: Good Condition
• Negatives in perfect preservation
• Residual fixing test <0.03 after the SD method
• A-D strips: No color change
Identification and care of Photographic negatives 6+7, Hermitage

Condition Assessment - negatives

Category 1:
- Good Condition, observation, enhanced supervision
- Broken glass plates
- Weak silver mirroring particularly along the edges

Category 1:
- Rolled 35 mm film
- Residual fixing test: > 0.03 after the SD method
- A-D strips: Color Changing 0-1

Category 2:
- Preservation / restoration, copying (analog / digital), chilling
- Flaking emulsion
- Bleached and discoloration of the emulsion, little silver mirror
Condition Assessment - negatives

Category 2:
- Little discoloration of the base
- Glass plates with the formation of milk-white surface
- Preservation / restoration, copying (analog / digital), chilling
- Micro-organisms, mold, etc., if RH > 60%

Condition Assessment - negatives

Category 2:
- Insect damage (silver fish, dust mites, etc.)
- Residual fixing test: < 0.03 after the SD method and yellow discoloration
- Plastic Base uneven and/or smells sour
- A-D strips: Color Changing 1-2

Condition Assessment - negatives

Category 3:
- Preservation / restoration, copying (analog / digital), chilling – urgent
- Wet, damp, water or fire damaged negatives
- Micro-organisms, mold, etc., if RH > 60%
Condition Assessment - negatives

Category 3:
- Plastic Base with bubbles, starting solution, or smell strongly
- A-D strips: Color Changing > 2
- Broken plates held together with tape.

Condition Assessment - random

<table>
<thead>
<tr>
<th>Confidence</th>
<th>Tolerance</th>
<th>Samples</th>
<th>Confidence</th>
<th>Tolerance</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>±0.5%</td>
<td>66.358</td>
<td>90%</td>
<td>±0.5%</td>
<td>27.060</td>
</tr>
<tr>
<td>99%</td>
<td>±1.0%</td>
<td>66.350</td>
<td>80%</td>
<td>±1.0%</td>
<td>27.060</td>
</tr>
<tr>
<td>99%</td>
<td>±1.5%</td>
<td>66.350</td>
<td>80%</td>
<td>±1.5%</td>
<td>27.060</td>
</tr>
<tr>
<td>99%</td>
<td>±2.0%</td>
<td>66.350</td>
<td>80%</td>
<td>±2.0%</td>
<td>27.060</td>
</tr>
<tr>
<td>99%</td>
<td>±3.0%</td>
<td>66.350</td>
<td>80%</td>
<td>±3.0%</td>
<td>27.060</td>
</tr>
<tr>
<td>99%</td>
<td>±5.0%</td>
<td>66.350</td>
<td>80%</td>
<td>±5.0%</td>
<td>27.060</td>
</tr>
</tbody>
</table>

Condition Assessment - random

- A minimum of 30 single images
- A maximum of 10% of the collection
Identification and care of Photographic negatives 6+7, Hermitage

Analysis and Report

Analysis and evaluation of the collected information
• The state of the selected sample
• Main causes of deterioration / instability (chemical, physical, biological, or handling damage)
• Quality of storage, climate / environment
Analysis and evaluation of the collected information

- Installation, handling, logistics
- Exhibition conditions (light, climate, mounting, etc.)
- Procedure for Lending
- Need for preservation / conservation / restoration
- Resources for conservation work

Recommendations and Action Plan

- Improvement Areas (buildings, archive room, climate, packaging, presentation) and like in relation to international standards or guidelines
- Argued and prioritized action plan with short-term as well as long-term priorities - like so operational / practical as possible.

Part 7.

Storage of negatives
Storage

• Packaging
 – Envelopes should be of good materials
 – Paper
 – Polyester
 – Polyethylene

• Inventory
 – no chipboard
 – Non-oil painted furniture
 – No fixed carpets
 – Preferably powder coated steel furniture
 – Preferably stainless inventory

• Air
 – The air must be free of ozone
 – The air must be free of sulfur
 – The air must be free of oxidizing gases
 – The air must be free of dust particles
Storage

• Microorganisms
 – The humidity must be <50%
 – The temperature shall be <20°C

• Dehydration
 – The humidity should not be so low that there is a problem with dehydration

• Handling
 – Caring - use white cotton gloves
Storage

• Requirements for rooms
 – Think long-term
 – Stable climate
 – No passage
 – No working space in magazine

Storage

• Requirements for inventory
 – Filing cabinets

Storage

• Requirements for inventory
 – Filing cabinets
Storage

• Requirements for inventory
 – Filing cabinets

Storage

• Primary Packaging

Storage

• Primary Packaging
Identification and care of Photographic negatives 6+7, Hermitage

Storage

• Inactive archive
• Working archive

Storage

General requirements
• RH <50% and temp. <21°C
• No constant light
• Air free of harmful gases
• No harmful containers
• Proper handling

Material conditions

B / W negatives and positives
• Negatives on paper
• Negatives on glass and plastic
• RH <50% and temp. <21°C
Storage Guides for Acetate Film and Color Materials

- The benefits of cooler and dry conditions has been proven

Media Storage Quick Reference Wheel (MSQR)

Four climates defined by temperature

<table>
<thead>
<tr>
<th>Climate</th>
<th>Temperature</th>
<th>Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room</td>
<td>20°C</td>
<td>30%-50% RH</td>
</tr>
<tr>
<td>Cool</td>
<td>12°C</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>4°C</td>
<td></td>
</tr>
<tr>
<td>Frozen</td>
<td>-10°C</td>
<td></td>
</tr>
</tbody>
</table>
Simplified storage evaluation

<table>
<thead>
<tr>
<th>NO</th>
<th>REASON ABLE</th>
<th>GOOD</th>
<th>VERY GOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will give significant changes</td>
<td>Not correspond to the ISO recommendations but may be satisfactory for long periods</td>
<td>Corresponds to ISO Recommendations</td>
<td>Will give a much extended life</td>
</tr>
</tbody>
</table>

Each environment has a specific Affect

<table>
<thead>
<tr>
<th>Storage Conditions</th>
<th>Glass Plates</th>
<th>Nitrates*</th>
<th>Acetate*</th>
<th>Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOM</td>
<td>Fair</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>COOL</td>
<td>Good</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>COLD</td>
<td>Very good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>FROZEN</td>
<td>No</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
</tr>
</tbody>
</table>

*Must be frozen if there are signs of degradation.

Is the "storage" useful?

<table>
<thead>
<tr>
<th>Storage Conditions</th>
<th>Glass Plates</th>
<th>Nitrates*</th>
<th>Acetate*</th>
<th>Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOM</td>
<td>Fair</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>COOL</td>
<td>Good</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>COLD</td>
<td>Very good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>FROZEN</td>
<td>No</td>
<td>Very good</td>
<td>Very good</td>
<td>Very good</td>
</tr>
</tbody>
</table>

*Must be frozen if there are signs of degradation.
Is “frozen” useful?

<table>
<thead>
<tr>
<th>Storage Conditions</th>
<th>Photo Prints</th>
<th>Ink Jet Prints</th>
<th>Magnetic Tape</th>
<th>CDs</th>
<th>DVDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room</td>
<td>Fair</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cool</td>
<td>Good</td>
<td>No</td>
<td>No</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Cold</td>
<td>Very good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Frozen</td>
<td>Very good</td>
<td>Very good</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Must be frozen if there are signs of degradation.

Glass plates

- Room: Reasonable
- Cool: Good
- Cold: Very good
- Frozen: No

Acetat*

<table>
<thead>
<tr>
<th>B/W</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room</td>
<td>No</td>
</tr>
<tr>
<td>Cool</td>
<td>No</td>
</tr>
<tr>
<td>Cold</td>
<td>Good</td>
</tr>
<tr>
<td>Frozen</td>
<td>Very good</td>
</tr>
</tbody>
</table>

* Can be frozen if there are signs of deterioration
Identification and care of Photographic negatives 6+7, Hermitage

Positives

<table>
<thead>
<tr>
<th>B/W</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rum</td>
<td>Reasonable</td>
</tr>
<tr>
<td>Cool</td>
<td>Good</td>
</tr>
<tr>
<td>Cold</td>
<td>Very good</td>
</tr>
<tr>
<td>Frozen</td>
<td>Very good</td>
</tr>
</tbody>
</table>

If the collection contains many different media?

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>Glass Plate</th>
<th>Hygroscopic</th>
<th>Azoide*</th>
<th>Polyester</th>
<th>Photo Prints</th>
<th>JSL</th>
<th>CDU</th>
<th>Safety Tint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cold</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Frozen</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Must be kept if there are signs of red/green

Preservation Assessment

Climate analyzes
• The condition of the assembly determined
• What then?
Stepwise changes

- Small changes often enough
- May be possible not to do more

<table>
<thead>
<tr>
<th>Temperature</th>
<th>RH</th>
<th>PI</th>
<th>% improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>21°C</td>
<td>50%</td>
<td>33 years</td>
<td></td>
</tr>
<tr>
<td>19°C</td>
<td>50%</td>
<td>50 years</td>
<td>52</td>
</tr>
<tr>
<td>19°C</td>
<td>40%</td>
<td>66 years</td>
<td>100</td>
</tr>
</tbody>
</table>

Effect of temperature

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Factor for fading</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°C</td>
<td>⅛x</td>
</tr>
<tr>
<td>24°C</td>
<td>1x</td>
</tr>
<tr>
<td>19°C</td>
<td>2x</td>
</tr>
<tr>
<td>13°C</td>
<td>4x</td>
</tr>
<tr>
<td>7°C</td>
<td>10x</td>
</tr>
<tr>
<td>4°C</td>
<td>16x</td>
</tr>
<tr>
<td>0°C</td>
<td>28x</td>
</tr>
<tr>
<td>-10°C</td>
<td>100x</td>
</tr>
<tr>
<td>-18°C</td>
<td>340x</td>
</tr>
<tr>
<td>-26</td>
<td>1000x</td>
</tr>
</tbody>
</table>

The effect of relative humidity

<table>
<thead>
<tr>
<th>RH</th>
<th>Factor for fading</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>2x</td>
</tr>
<tr>
<td>40%</td>
<td>1x</td>
</tr>
<tr>
<td>15%</td>
<td>⅛x</td>
</tr>
</tbody>
</table>
Methods

- Ceiling vent
- Storm windows
- Moisture blocking
- Insulation
- Weather strips

Need cooler conditions?

- Small collections → Chest freezer
- Large collections → Freezer box (special room)

Freezer

Pro
- Lower startup costs
- Lower energy consumption
- In general, easier to maintain
- Local service is usually easy to obtain
Identification and care of Photographic negatives 6+7, Hermitage

Freezer

Contra
• Must be packed conditioned with humidity control
• Necessary to keep "casual users" away

Freezer box

Pro
• Moisture Control
• Special packaging is not necessary
• Easier to move individual objects

Contra
• High startup costs
• High operating costs
• More difficult to control
Freezer box myths
Freezing can create gelatin injuries?
• Not like fruit and vegetables
• Even wet photographs can be frozen
• The only technique that can not be frozen is Wet-collodion

Mogens S. Koch

Freezer box myths
Freezing creates condensation?
• Not a problem

Mogens S. Koch

Freezer box myths
Humidity control or expensive packaging required?
• Reuse of existing / poor packing is possible

Mogens S. Koch
Identification and care of Photographic negatives 6+7, Hermitage

Packaging

- Developed by Mark McCormick-Goodhart
- Available as sets or "do-it-yourself"

Materials

- Two freeze appropriate zippered polyethylene bags
- Two pieces of 4-ply good quality cardboard
- A "archival" box
- A humidity indicator

Safe & Verifiable Package Design for Freezer Storage of Photo Materials

The inner and outer bags are made of clear, 2.7 to 4 mil thick, food quality polyethylene.
Identification and care of Photographic negatives 6+7, Hermitage

Method

- Put the photos in a plastic bag
- Squeeze the air out and seal
- Make a sandwich in a box
- A piece of dried cardboard
- Bag with photographs
- Another piece of dried cardboard
- Close the box

Method (continued)

- Put the box in a second plastic bag
- Add a moisture indicator in the bag
- Squeeze the air out and seal
- The package alone would be good for about 15 years

Oven-dried cardboard

Normal, ordinary kitchen top
- Heat oven to 95°C to 100°C
- Put a single piece of cardboard on a metal grate
- Heat 3 to 5 minutes
- Cool for a few minutes on a metal grate
- Use immediately or put it in a sealed bag
Remember

- All pages must be exposed during heating and cooling
- Wrapping is normal
 - Reduced by keeping all surfaces equally exposed as possible during heating and cooling

Microwave drying

Microwave without turntable
- Place the carton horizontally in the oven, expose as much of the both sides as possible
- For plastic 35mm film can be used normally rack
- Heat on high for about 30 seconds

Microwave drying (continued)

- Remove and allow cooling
- Microwaves can vary and it may be necessary to adjust the time
Cool storage myths

Take in and out of cool storage creates more rapid degradation?
- Maximum degradation caused by conditions of use

Cool storage myths

Freezing allows cold shock damage?
- Cooling is not instant
- For example:
 - Film at 21°C placed in a freezer at – 40°C
 - about 15°C per minute

Thermal contraction

- The contraction is small

<table>
<thead>
<tr>
<th>Material</th>
<th>% changes per F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatin</td>
<td>0.002</td>
</tr>
<tr>
<td>Polyester</td>
<td>0.001</td>
</tr>
<tr>
<td>Acetate</td>
<td>0.003</td>
</tr>
<tr>
<td>Glass</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Cool storage myths

Photographs must be conditioned in space before they come in cool storage?
• The condensation is not a problem when they come into Cool storage myths

At least 24 hours of heating time needed before use?
• Needed only to warm up over the dew point temp. of user space
• Humidity of storage space has no influence on the condensation

Fastest warm-up

• Remove small amounts
 – Low thermal mass
• Water stopping packaging
 – Protects condensation on photographs
• Placed directly in the user rooms
 – Maximize the temperature difference
Sample

- Thought frozen at -16°C
- Thought used at 22°C/50% RH
 - Dew point temperature of the user rooms 11°C

Small amounts

- Time for 140 m roll of 16mm film to reach the dew point temperature

<table>
<thead>
<tr>
<th>Roll (s)</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Maximize the temperature difference

- Time to reach equilibrium, depending on the object and space temperature
Identification and care of Photographic negatives 6+7, Hermitage

Sample
50 8 "x 10" negatives in paper envelopes in a document box
- Thermal split half-life time 110 minutes (1 hour, 50 minutes).

Temperature of Negatives

<table>
<thead>
<tr>
<th>Start temp.</th>
<th>1/50</th>
<th>3/40</th>
<th>5/30</th>
<th>7/20</th>
<th>9/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>16°C</td>
<td>19°C</td>
<td>20.5°C</td>
<td>21.3°C</td>
<td>21.8°C</td>
<td>22°C</td>
</tr>
<tr>
<td>-18°C</td>
<td>2.2°C</td>
<td>12°C</td>
<td>17°C</td>
<td>19.7°C</td>
<td>21°C</td>
</tr>
</tbody>
</table>

Sluice contra packing

- -18°C storage
- First gate:
 - - 4°C/30% RH
- Second gate:
 - 12°C/30% RH
- User rooms:
 - 22°C/50% RH
- 50 8 "x 10" negatives

Sluse

- The first sluice:
 - 12 hours, 50 minutes
- Second sluice:
 - 12 hours, 50 minutes
- Total Time:
 - 25 hours 40 min.
Identification and care of Photographic negatives 6+7, Hermitage

Water stopping packaging

• Seal in plastic bag
• Bring in user rooms
• Time to reach the dew point of time:
 – 3 hours, 40 minutes

Psychrometric relationships

• Not easy to read psychrometric curves
• For quick approximation see "Psychrometric Calculator"
 – http://www.termo.unit.no/kkt/grzifik/java/PsychProJava.html
Moisture content

- Constant temperature, moisture content will vary with the RH
- Constant RH, the moisture content will vary with temperature

Achieve low RH in cold storage

- Conditions photographs at moderate RH in room temperature
- Pak into vapor-tight package with minimal air
- Freeze about -18°C
- Behaves as if it is -18°C and low RH

Cool storage with humidity control

Photographs conditioned during a storage at low temperatures to moderate RH
- Taken out for use
 - Behave as the ambient temperature and higher RH
- Is usually not a problem
 - High temperature (e.g., a car in summer) can be problematic
Conclusions

• Cool storage is not as expensive and difficult to handle as you would think!

PBS Online NewsHour

• http://www.pbs.org/newshour/bb/media/jan-june04/bettmann_06-10.html#